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Abstract Proper uncertainty estimation for data series with a high proportion of zero and near zero
observations has been a challenge in hydrologic studies. This technical note proposes a modification to the
Generalized Likelihood function that accounts for zero inflation of the error distribution (ZI-GL). We compare
the performance of the proposed ZI-GL with the original Generalized Likelihood function using the entire
data series (GL) and by simply suppressing zero observations (GLy>0). These approaches were applied to
two interception modeling examples characterized by data series with a significant number of zeros. The ZI-
GL produced better uncertainty ranges than the GL as measured by the precision, reliability and volumetric
bias metrics. The comparison between ZI-GL and GLy>0 highlights the need for further improvement in the
treatment of residuals from near zero simulations when a linear heteroscedastic error model is considered.
Aside from the interception modeling examples illustrated herein, the proposed ZI-GL may be useful for
other hydrologic studies, such as for the modeling of the runoff generation in hillslopes and ephemeral
catchments.

1. Introduction

Bayesian inference has been widely used in hydrology for predictive uncertainty estimation. Within the Bayes-
ian framework, two main approaches are used: (1) lumping all sources of uncertainty together and treating
them as an additive term to the deterministic hydrological predictions (e.g., Schoups & Vrugt, 2010); (2) sepa-
rately accounting for the contribution of different sources of uncertainty (Kavetski et al., 2006; Renard et al.,
2010, 2011; Vrugt et al., 2008). Regardless of the method used for uncertainty estimation, it has been recog-
nized that the correct characterization of the residual errors is essential for obtaining meaningful parameter
values and reliable uncertainty ranges (Schoups & Vrugt, 2010; Smith et al., 2010; Thyer et al., 2009).

Different approaches have been used to deal with heteroscedasticity and correlation, typical characteristics
of the hydrological modeling errors. Heteroscedasticity was considered by using a mixture of normal distri-
butions for low and high flows (Schaefli et al., 2007), by modeling the residual standard deviation as a linear
function of predicted values (Evin et al., 2014; Schoups & Vrugt, 2010; Westra et al., 2014; and many others),
and by using Box-Cox transformations of data (Cheng et al., 2014; Smith et al., 2010, 2015). A first-order
autoregressive model is the most frequently used formulation to deal with correlated residuals (Evin et al.,
2013, 2014; Schaefli et al., 2007; and many others), although more generic frameworks are illustrated in
some studies (e.g., Schoups & Vrugt, 2010).

The impact of zero and near zero observations has also been acknowledged. Despite recent studies
highlighting, the need for special handling of zero and near zero observations in uncertainty estimation
(Evin et al., 2013, 2014; McInerney et al., 2017), there are only a few methods developed for this purpose.
Smith et al. (2010) introduced a mixture likelihood to separate the contribution of zero observations (with
zero and nonzero residuals) and nonzero observations (with nonzero residuals). Wang and Robertson (2011)
and Li et al. (2013) treated zero observations as censored data and considered their contribution to the like-
lihood as being the probability of the variable being equal or (hypothetically) below zero. Westra et al.
(2014) censored the values below a certain threshold from the data series to avoid the negative impact of
the corresponding residuals on the likelihood quantification.

In a recent paper, Schoups and Vrugt (2010) introduced a flexible likelihood function to deal with non-
Gaussian, heteroscedastic, and correlated residuals. This likelihood function has been proved to be useful in
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many hydrological modeling studies (e.g., Koskela et al., 2012; Schoups & Vrugt, 2010) and other studies
suggested its application (e.g., Li et al., 2012). However, the presence of zero and near zero observations in
the data series has been recognized as a difficulty in the proper quantification of the predictive uncertainty
(Evin et al., 2013; Honti et al., 2013; Koskela et al., 2012; Schoups & Vrugt, 2010).

In this study, we present a modified version of the Generalized Likelihood function (GL) of Schoups and
Vrugt (2010) that accounts for zero inflation of the error distribution. The proposed method is similar to the
zero-inflation approach presented in Smith et al. (2010) except that the residual time series is divided into
zero and nonzero states based on simulated instead of observed values. The proposed modification to the
GL addresses the shortcomings discussed in previous publications, further extending its applicability. We
illustrate the usefulness of the proposed likelihood function with a rainfall interception modeling example.

This paper is organized as follows. Section 2 presents the proposed zero-inflated version of the Generalized
Likelihood function (ZI-GL). Section 3 empirically illustrates the usefulness of the ZI-GL with an interception
modeling case study. This technical report ends with a summary of the main findings and recommenda-
tions for further studies in section 4.

2. Zero-Inflated Generalized Likelihood Function

2.1. Motivation
Schoups and Vrugt (2010) presented the Generalized Likelihood function to model non-Gaussian, hetero-
scedastic, and correlated residuals. Instead of the commonly assumed Gaussian distribution, residuals are
modeled by a skewed exponential power (SEP) distribution, which has kurtosis (b) and skewness (n) param-
eters. The use of this flexible error distribution enables to some extent the handling of data series with zero
observations, which can be modeled with zero error and therefore, may result in a more kurtotic distribu-
tion than a Gaussian distribution. However, for cases with prolonged periods of zero observations, increas-
ing b may not be sufficient to accommodate the zero inflation of the error distribution (Koskela et al., 2012).

2.2. Formulation
In this work, we propose a modification of the Generalized Likelihood function to extend its applicability to
situations where the data series has a high proportion of zero observations. We based our approach on the
zero-inflation method presented by Smith et al. (2010), except that we split the residual time series accord-
ing to simulated instead of observed values. Conditioning the residual error model on simulated values
allows its use in prediction, where observations are not available. The raw residuals (et), defined as the dif-
ference between the observed (yt) and the simulated (ŷt) variable at time t,

et5yt2ŷ t; (1)

are separated in three classes: zero residuals from zero simulations (e1); nonzero residuals from zero simula-
tions (e2); and nonzero residuals from nonzero simulations (e3). The raw residuals are transformed to
account for heteroscedasticity and autocorrelation (hereafter a refers to these transformed residuals) and
are modeled in two stages. First, a binomial probability model is used for residuals corresponding to zero
simulations (at,sim50), where a1 are associated with a probability q and a2 are associated with a probability
1 – q. Transformed residuals from class 2 are subsequently modeled by a SEP distribution with mean of 1,
unit variance, skewness parameter n, and kurtosis parameter b. The residual model corresponding to the
zero-simulation state is therefore,

at;sim50 �
0 with probability q

SEPð1; 1;n; bÞ with probability 12q
:

(
(2)

where q 5 n1/(n1 1 n2) is the probability of a zero error given a zero simulation and is computed directly
from the number of zero simulations with zero error n1 and the number of zero simulations with nonzero
error n2. A standardized SEP distribution (zero mean and unit variance) is used to model transformed resid-
uals from nonzero simulations (at,sim>0),

at;sim>0� SEPð0; 1;n;bÞ: (3)

Heteroscedasticity is considered by assuming a linear model for the error variance, i.e.,
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rt5r01r1ŷ t; (4)

where rt is the standard deviation at time t, r0 is the heteroscedasticity intercept, and r1 is the heterosce-
dasticity slope. The standard deviation rt has different meanings depending on whether heteroscedasticity
or autocorrelation is first considered. This issue will be discussed later in this section. Correlation between
errors is accounted for by assuming a first-order autoregressive model, AR(1).

If autocorrelation is treated before heteroscedasticity, the raw residuals are modeled following (Schoups &
Vrugt, 2010)

et2/et215rt at with at�SEP l; 1; n; bð Þ; (5)

where / is the parameter of a first-order autoregressive polynomial, rt is the standard deviation of the
autocorrelation-corrected residuals at time t, and at is an innovation from the corresponding SEP density,
with mean l (l 5 1 for residual class 2 and l 5 0 for residual class 3), unit variance, skewness parameter n,
and kurtosis parameter b. Evin et al. (2013) demonstrated that applying an AR(1) model to the standardized
residuals,

gt5
et

rt
; (6)

avoided the instability that may occur when the AR(1) model is applied to raw (heteroscedastic) residuals.
Considering the reparameterization of this approach presented by Evin et al. (2014), equation (5) becomes

gt2/gt215at with at � SEP l; 1; n; bð Þ: (7)

In this case, the variance of the standardized residuals is 1/(1 – /2) and the standard deviation of equations
(4) and (6) corresponds to rt5

ffiffiffiffiffiffiffiffiffiffiffiffi
12/2

p
re, where re is the standard deviation of raw residuals.

The modified log-likelihood function (L) that accounts for zero inflation, heteroscedasticity, autocorrelation,
and non-Gaussian residuals is

LðhjyÞ5 n1log q1n2log ð12qÞ1n2log
2rn2

xb2

n21n2
21

2
Xn2

t251

log rt2 2cb2

Xn2

t251

jan2;t2 j
2=ð11b2Þ1

n3log
2rn3

xb3

n31n3
21

2
Xn3

t351

log rt3 2cb3

Xn3

t351

jan3;t3 j
2=ð11b3Þ;

(8)

where h 5 {hs, he} is the parameter set (composed of the deterministic model parameters hs and the residual
error model parameters he 5 {q,rt2 ,rt3 ,n2,n3,b2,b3, /}), y is a vector with the observations (measurements of
the observed system response), n1 is the number of zero simulations with zero error, n2 is the number of
zero simulations with nonzero error, n3 is the number of nonzero simulations with nonzero error, ani ;ti 5ni
2signðlni

1rni ati Þðlni
1rni

ati Þ and xbi
, cbi

, lni
and rni

are calculated from bi and ni, where i is the index of the
corresponding residual class, and are given in Appendix A of Schoups and Vrugt (2010; equations (A2), (A3),
(A5) and (A6), respectively). The ZI-GL is reduced to GL as the number of zero simulations approaches zero.

Other heteroscedastic error models can be considered instead of the linear model presented herein. How-
ever, the implications of the transformation to the likelihood function should be carefully analyzed (see McI-
nerney et al., 2017, for a comparison between heteroscedastic error models used in hydrologic studies).

2.3. Generation of Probabilistic Predictions
In a Bayesian framework, the posterior parameter distributions are used to create the predictive uncertainty
that results from parameter uncertainty, i.e., samples from the posterior parameter distributions are used to
run the deterministic model and generate the uncertainty related to parameter uncertainty. The probabilis-
tic predictions are generated by adding to each deterministic simulation, at each time step, an innovation
sampled from the inferred residual error model after ‘‘detransformation’’ to account for both heteroscedas-
ticity and autocorrelation. For time steps with zero simulations, for each deterministic simulation, the bino-
mial probability model (equation (2)) is used to determine whether the SEP density with parameters b2 and
n2 should be used. The value of q calculated during model calibration is considered in both calibration and
validation modes, since in predictive settings observations are not available to allow the computing of n1
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and n2. For time steps with nonzero simulations, innovations are drawn from the standardized SEP density
with parameters b3 and n3. The generation of samples from the corresponding SEP density is done follow-
ing the simulation algorithm presented in Schoups and Vrugt (2010). When autocorrelation is considered
before heteroscedasticity, innovations are multiplied by the standard deviation rt and subsequently equa-
tion (5) is used to create the residual time series. If heteroscedasticity is treated before autocorrelation, stan-
dardized residuals are generated by using equation (7) followed by the multiplication of the resulting time
series by the standard deviation rt.

3. Empirical Case Study

3.1. Interception Model, Data, and Parameter Inference
We illustrate the applicability of the proposed zero-inflated Generalized Likelihood function with an inter-
ception modeling example. We used a simplified version of the Rutter model (Rutter et al., 1971) with a lin-
ear threshold model for the canopy drainage (Vrugt et al., 2003). This interception model requires as input
gross rainfall and potential evaporation data and provides as output interception evaporation (I) and
throughfall (Tf) estimates. The canopy water balance is calculated by

dS
dt

5aP2D2I; (9)

where S (mm) is the water storage in the canopy, a (dimensionless) is an interception efficiency parameter,
P (mm h21) is the gross rainfall rate, D (mm h21) is the canopy drainage, and I (mm h21) is the interception
evaporation rate. Canopy drainage is calculated as

D5
bðS2cÞ if S > c

0 otherwise
;

(
(10)

where b (h21) is a drainage parameter and c (mm) is the storage capacity. Throughfall rate is estimated as
the sum of the canopy drainage and the proportion of rain falling directly on the ground,

Tf 5ð12aÞP1D; (11)

and interception evaporation is assumed to increase linearly with the storage in the canopy,

I5dEp
S
c
; (12)

where d (dimensionless) is an evaporation efficiency parameter and Ep (mm h21) is the potential evapora-
tion rate. The interception model has four parameters (a, b, c, and d). This model was implemented using a
fixed-step implicit Euler scheme, with an integration time step of 1 min.

Hourly throughfall data from two interception plots were used for the identification of the interception
model parameters. One plot is covered by a secondary native Atlantic forest (Mixed Ombrophilous Forest)
and the other is a Pinus taeda plantation. Both plots are located in Southern Brazil. Hourly gross rainfall was
measured in a nearby meteorological station and used as forcing in the interception model. Potential evap-
oration was assumed as being equal to 4 mm d21 which was converted into hourly values by using a sinu-
soidal variation between 6 A.M. and 6 P.M. and constant rate in night hours. The available data series
correspond to the period of 26 February 2014 to 6 October 2014 for the native forest plot and 23 August
2008 to 17 November 2008 for the pine plantation plot.

The data series were separated in rainfall events considering a rainless period preceding and following the
event of 12 h. Rain events of less than 0.25 mm depth—which correspond to a single tip of the gauge—
were discarded. Events that resulted in throughfall greater than gross precipitation were discarded as well.
This procedure resulted in 59 and 35 events for the native forest and pine plantation plots, respectively. The
events were sorted in ascending order of gross rainfall and the ones in even positions were assigned to the
calibration data series and the remaining events produced the validation data series. The calibration and
validation data series contain 51 and 40% (native forest) and 59 and 56% (pine plantation) of zero observa-
tions, respectively. Without considering zero observations, the proportion of data equal to measurement
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resolution is 7 and 4% (native forest) and 44 and 29% (pine plantation) for the calibration and validation
data series, respectively.

The differential evolution adaptive Metropolis (DREAM) algorithm (Vrugt, 2016; Vrugt et al., 2008, 2009) was
used for parameter inference and uncertainty estimation. DREAM requires the setup of some parameters
that depend on the case study: the dimension of the problem D, i.e., the number of parameters to be esti-
mated (interception model parameters 1 error model parameters); the number of Markov chains N; and the
number of generations T. In this study, we set N 5 max(10;2D) and T 5 3,000. When necessary, T was
increased until convergence to a stationary distribution was achieved. Additionally, the user must choose a
likelihood function to evaluate the model residuals and define a prior distribution for each parameter. The
proposed modification of the Generalized Likelihood function was tested against its original formulation
introduced by Schoups and Vrugt (2010), considering different levels of complexity for the residual error
model (Table 1). The error models included in this analysis were chosen in an iterative manner, where the
increase in complexity from one error model to another was done after verifying the inability of the preced-
ing model to meet one or more assumptions made about the model residuals. The use of both the original
Generalized Likelihood function formulation (GL) and its corresponding zero-inflated version (ZI-GL) with
each error model diverge from the likelihood selection framework presented by Smith et al. (2015). Follow-
ing that framework, the potential for zero inflation should be verified as a first step and would likely con-
duct the likelihood selection process toward a zero-inflated likelihood. However, maintaining the two

Table 1
Assumptions of Each Residual Error Model Considered in This Study and Corresponding Number of Calibrated Parameters (D)

Formulation Likelihood Distribution Heteroscedasticity Correlation Fixed parameters D

Generalized
Likelihood function

L1 Gaussian Homoscedastic Independent r1 5 0, b 5 0, n 5 1, / 5 0 5
L2 Gaussian Heteroscedastic Independent b 5 0, n 5 1, / 5 0 6
L3 Skewed exponential power Heteroscedastic Independent n 5 1, / 5 0 7
L4/L5a Skewed exponential power Heteroscedastic Correlated n 5 1 8

Zero-inflated
Generalized
Likelihood functionb

L1 Skewed exponential power Homoscedastic Independent r1 5 0, b 5 0, / 5 0 7
L2 Skewed exponential power Heteroscedastic Independent b 5 0, / 5 0 8
L3 Skewed exponential power Heteroscedastic Independent / 5 0 9
L4/L5a Skewed exponential power Heteroscedastic Correlated 10

aFor L4 the AR(1) model is applied to raw residuals (et) and for L5 it is applied to standardized residuals (gt 5 et/rt).
bFor the ZI-GL approach, the presented

assumptions correspond to residuals from class 3. Residuals from class 2 are considered homoscedastic and are modeled with a skewed exponential power dis-
tribution with fixed parameters b 5 1 and n 5 10.

Table 2
Interception and Error Model Parameters Specifications

Parameter Description Minimum Maximum Unit

Interception model a Interception efficiency 0.1 1
b Drainage parameter 1.0 1,000 d21

c Storage capacity 0.1 10 mm
d Evaporation efficiency 0.1 5

Generalized
likelihood function

r0 Heteroscedasticity intercept 0 50 mm d21

r1 Heteroscedasticity slope 0 1
b Kurtosis parameter 21 1
/ Autocorrelation coefficient 0 1

Zero-inflated generalized
likelihood function

r0,2 Standard deviation for residual class 2 0 50 mm d21

r0,3 Heteroscedasticity intercept for residual class 3 0 50 mm d21

r1,3 Heteroscedasticity slope for residual class 3 0 1
b3 Kurtosis parameter for residual class 3 21 1
n3 Skewness parameter for residual class 3 0.1 10
/ Autocorrelation coefficient 0 1
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formulations allowed us to separate the effects resulting from increasing residual model complexity from
those caused by accounting for zero inflation of the error distribution. We also compared the ZI-GL with the
results obtained by simply suppressing zero observations from the data series when using the original GL
formulation (GLy>0). In this case, we simply omitted all residuals (zero and nonzero) from zero observations
from the calculation of the likelihood function value. Heteroscedasticity was considered by assuming a lin-
ear model for the error variance and a first-order autoregressive model AR(1) was used to account for resid-
ual autocorrelation. The AR(1) model was applied to the entire series. The ZI-GL formulation requires the
specification of two SEP densities. For the residual class 2 (nonzero residuals from zero simulations), we
fixed b2 to a value of 1 and n2 to a value of 10. For the residual class 3 (nonzero residuals from nonzero sim-
ulations), the SEP parameters b3 and n3 were calibrated with the interception model parameters and the
remaining error model parameters. In the ZI-GL approach, heteroscedasticity was considered only for resid-
uals from class 3. A uniform prior for each parameter was used with ranges specified in Table 2.

The last 3,000 parameter sets generated with the DREAM algorithm were used to represent the parameter
uncertainty and to create the probabilistic predictions as described in section 2.3. The performance of each
error model was assessed using different metrics. The reliability of the probabilistic predictions was evalu-
ated by visual inspection of the predictive QQ plot (Thyer et al., 2009), which compares the empirical cumu-
lative distribution function (cdf) of the sample of p values Fŷ(t)(yt) with the cdf of a uniform distribution, and
quantified using the reliability metric (Evin et al., 2014; McInerney et al., 2017),

Reliability½ŷ; y�5 2
N

XN

t51

jFU FŷðtÞðytÞ
� �

2FX Fŷ ðtÞðytÞ
� �

j; (13)

where Fŷ(t) is the cdf of the predictive distribution at time t and yt is the observation, FU is the cdf of the uniform
distribution U(0,1), and FX is the empirical cdf. The cdf of the predictive distribution is discontinuous at yt 5 0.
For that reason, the p values corresponding to zero observations were considered as a random value between
the p value just before yt 5 0 and the p value just after yt 5 0. If the observations are samples of the predictive
distribution, the predictive QQ plot follows the 1:1 line and the reliability metric is zero. The precision is related
to the width of the probabilistic predictions and was measured by the precision metric (McInerney et al., 2017),

Precision½ŷ; y�5 1
N

XN

t51

sdev ŷ t=
1
N

XN

t51

yt; (14)

where sdev ŷt is the standard deviation of the probabilistic predictions at time step t. The overall capability of
the model to simulate the water balance is quantified by the volumetric bias metric (McInerney et al., 2017),

Bias½ŷ; y�5
����
XN

t51
yt2

XN

t51
ŷ t;meanXN

t51
yt

����; (15)

where ŷt,mean is the mean of the predictions at time step t. For all three metrics, zero indicates perfect per-
formance. For a more detailed interpretation of the above metrics, the reader is encouraged to refer to the
cited references. Similar metrics were also used in other hydrological modeling studies (e.g., Renard et al.,
2010; Thyer et al., 2009).

3.2. Predictive Uncertainty
Compared to the original Generalized Likelihood function (GL), the proposed zero-inflated version of the GL
(ZI-GL) improved the quality of the predictive uncertainty for all error models as measured by the precision,

Figure 1. Predictive uncertainty derived using each of the five error models (L1–L5) for the native forest case study. The
observed throughfall series of the entire validation period is presented in the top plot. The predictions using the original
Generalized Likelihood function formulation (GL), by simply suppressing residuals from zero observations from original
Generalized Likelihood function (GLy>0) and using the zero-inflated version of the Generalized Likelihood function (ZI-GL)
are presented in the left, middle, and right columns, respectively. In order to make the figure clearer, only a portion of the
validation period is shown (gray shaded area of the top plot). The dots correspond to the throughfall observations. The
light and dark shaded areas indicate the 90% total predictive uncertainty and the uncertainty that results from parameter
uncertainty, respectively. The performance metrics were calculated for the entire validation period. The insets in the
upper right corner of each plot displays the predictive QQ plot for observed throughfall lower (left) and greater (right)
than 2 mm h21. If the predictive uncertainty is appropriate, then the black line should be close to the 1:1 gray line.
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reliability, and volumetric bias metrics (which can be observed by comparing the first and third columns of
Figure 1 and the corresponding metrics in Figures 2a and 2c). The poor performance obtained for the GL is
evidenced by visual inspection of the predictive uncertainty, which assumes even negative values (without
any physical meaning) (first column of Figure 1). Other studies also encountered this same problem when
modeling the hydrological behavior of dry basins (Evin et al., 2013; Schoups & Vrugt, 2010). Considering a
skewed density when using GL avoided these negative predictive bounds; however, the predictive uncer-
tainty remained large and therefore meaningless (results not shown). Omitting the residuals from zero
observations (GLy>0) resulted in better behaved uncertainty bounds compared to the GL approach (first
and second columns of Figure 1). When the GLy>0 was used, only the error model L4 resulted in significant

Figure 2. Performance metrics for uncertainty ranges derived using each of the five error models (L1–L5) in the original
Generalized Likelihood function (GL), by simply suppressing zero observations from the data series (GLy>0) and using the
zero-inflated version of the Generalized Likelihood function (ZI-GL). The metrics are presented for (a) the native forest
case study considering the entire time series, (b) the native forest case study considering only time steps with nonzero
residuals, (c) the pine plantation case study considering the entire time series, and (d) the pine plantation case study con-
sidering only time steps with nonzero residuals. For all three metrics, zero indicates perfect performance.
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negative values for the predictive uncertainty. The large uncertainty bound obtained with that error model
was a result of the relatively high inferred value for the autoregressive model parameter (maximum likeli-
hood value for / of 0.36 for the native forest case study) combined with the use of raw residuals in the
AR(1) model. As demonstrated in Evin et al. (2013), removing autocorrelation of raw instead of standardized
residuals may result in a wide and poor predictive uncertainty. Removing heteroscedasticity before autocor-
relation (error model L5), as suggested in the aforementioned study, avoided the occurrence of negative
bounds, which can be observed by comparing the predictive uncertainty for L4 and L5 in the second
column of Figure 1. For the native forest (and pine plantation), the use of the error model L5 with the GL
(GLy>0) accounted for the high autocorrelation between standardized residuals, with maximum likelihood
value for / greater than 0.30. As a consequence, larger differences in the performance metrics values
between L4 and L5 were obtained in these situations.

The poor performance of the GL for the error models L2 to L5 may be a consequence of the negative
impact of residuals from near zero simulations on the likelihood quantification when the linear heterosce-
dastic error model is considered, which is acknowledged in many hydrological modeling studies (e.g., Evin
et al., 2013; Westra et al., 2014). The improvement in the quality of the predictive uncertainty obtained
when the ZI-GL approach is used illustrates the ability of this method to at least partially handle this prob-
lem. In the ZI-GL, nonzero residuals from zero simulations are modeled separately and, therefore, these
residuals are removed from the estimation of the linear heteroscedastic error model. Since GLy>0 simply
omit the residuals from zero observations from the computation of the likelihood value, a fewer number of
residuals from near zero simulations is considered in this method. As a result, except for L4 whose poor pre-
dictive bounds was discussed before, the precision and volumetric bias metrics obtained with GLy>0 were
lower than using the ZI-GL approach (darker blue for GLy>0 compared to ZI-GL in Figure 2a). By avoiding
the increase in the contribution to the likelihood of residuals from near zero simulations, which can assume
overly large values after their standardization using the heteroscedastic error model, greater weight is given
to residuals from large simulated values, which have a higher impact on the quantification of the precision
and bias metrics. The ZI-GL provided better results than the GLy>0 considering the reliability metric (darker
blue for ZI-GL compared to GLy>0 in Figures 2a and 2c), since the incorporation of a zero-inflation approach
results in a better estimate of the predictive uncertainty for zero residuals. However, when only time steps
with nonzero residuals are considered, the reliability metric is lower for the GLy>0 method (darker blue for
GLy>0 compared to ZI-GL in Figures 2b and 2d).

In order to reduce the negative impact of residuals from zero and near zero simulations on the likelihood
calculation, we set the heteroscedasticity intercept parameter to a fixed value (5 0.12 mm h21) and per-
formed the same analysis of the predictive uncertainty presented herein (the results are presented as
supporting information). When the heteroscedasticity intercept parameter is fixed, the performance
metrics for the three approaches are much more similar. Considering the entire time series, lower reli-
ability values are obtained for the ZI-GL, since this approach is the only one that do not overestimate the
predictive uncertainty for zero residuals. The precision metric is also better for ZI-GL. For GL and GLy>0,
the residual standard deviation for all residuals from zero simulations is equal to the fixed value of the
heteroscedasticity intercept, which results in an overestimated uncertainty for these time steps. The
worst reliability for ZI-GL when only time steps with nonzero residuals are considered is a consequence
of the use of the ‘‘inflated SEP’’ for all residuals from zero simulations, which ultimately results in p values
greater than q for time steps corresponding to residuals from class 2 (nonzero residuals from zero
simulations).

The error model that assumes homoscedastic, Gaussian, and independent residuals (L1) resulted in better
estimates of the total simulated volume (lower volumetric bias metric for the mean predictive throughfall
values—darker blue for L1 in Figures 2a and 2c). Homoscedastic error model gives equal weight to all raw
residuals, which are in general larger for higher simulated values. Since the peaks correspond to the largest
proportion of simulated throughfall, the total volume is expected to be better simulated when a likelihood
that produces a better fit for higher values is used. The same result is expected to occur in very responsive
catchments which respond rapidly to precipitation. For example, in the hydrological modeling of a semiarid
Australian catchment where a high proportion of the annual flow occurs in a short period of the year, Westra
et al. (2014) found a correspondence between models ranked based on the Nash-Sutcliffe coefficient of effi-
ciency and the total annual flow error. However, this error model resulted in an overestimated uncertainty for
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low throughfall values and a systematic underprediction of higher values, as a consequence of the narrow
estimated predictive uncertainty (predictive QQ plots corresponding to L1 on the insets of the Figure 1).

3.3. Parameter Inference
The choice of the error model had a large influence on the posterior parameter distribution (Figure 3). For
the first error model (L1), the posterior parameter estimates were very similar for the original GL (GL), by
simply suppressing zero observations from the data series (GLy>0) and using the zero-inflated version of the
Generalized Likelihood function (ZI-GL). Two main shifts in parameter values are evident: (1) when changing
from homoscedastic (L1) to heteroscedastic model (L2–L5) (compare boxplots for L1 with L2–L5 in Figure
3); and (2) when changing from the GL to the GLy>0 and to the ZI-GL when heteroscedasticity is considered
(compare white with red and blue boxplots in Figure 3). Both shifts are a consequence of the different rela-
tive contribution of residuals from near zero simulations to the likelihood value. Therefore, distinct weights
are given to processes and corresponding parameters related to these low values depending on the choice
of the error model. When the heteroscedasticity intercept parameter was set to a fixed value of 0.12 mm
h21, the differences between the posterior parameter estimates obtained for GL, GLy>0 and ZI-GL were
greatly reduced (supporting information Figure S3).

3.4. Residual Error Diagnostics
The transformed residual errors (innovations) were better represented by the assumed distribution with the
consideration of a SEP density, autocorrelation, and when zero residuals were separately handled (GLy>0 or
ZI-GL) (L4 and L5 of GLy>0 and ZI-GL in Figure 4a). For the pine plantation case study, the transformed resid-
ual errors deviate more strongly from the assumed distribution (results not shown). We hypothesize that
this is a limitation caused by the data measurement resolution, which was 10 times greater than for the
native forest case study. The data series collected in the pine plantation has a high proportion of throughfall
data equal to the measurement resolution (section 3.1).

Figure 3. Box plots of the posterior parameter distributions derived using each of the five error models (L1–L5) using the Generalized Likelihood function (GL), by
simply suppressing zero observations from the data series (GLy>0) and using the zero-inflated version of the Generalized Likelihood function (ZI-GL) for (a) the
native forest case study and (b) the pine plantation case study. The y axis limits were set to the prior range of each parameter.
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The hypothesis of homoscedastic residuals was clearly violated (first row of Figure 4b). However, the consid-
eration of a linear model for the error variance (L2–L5) resulted in large values for the transformed residuals
of near zero simulations, which could have had a deteriorating impact on the likelihood quantification (as
discussed in the section 3.2). The use of even more complex residual models, with the incorporation of
autocorrelation (L4 and L5), exacerbated this problem. Furthermore, although reducing the lag 1 autocorre-
lation as compared to L2 and L3, the inclusion of an AR(1) model was not enough to remove residual corre-
lation (plots for L4 and L5 in Figure 4c). Setting the heteroscedasticity intercept parameter to a fixed value
of 0.12 mm h21 prevented the occurrence of overly large transformed residuals from near zero simulations,
especially for the GL and ZI-GL formulation (supporting information Figure S4b).

4. Conclusions and Recommendations

In this study, we introduced a modification of the Generalized Likelihood function of Schoups and Vrugt
(2010) that accounts for zero inflation of the error distribution (ZI-GL). We follow the zero-inflation approach
of Smith et al. (2010) except that the residual time series is divided into zero and nonzero states based on
simulated instead of observed values. Conditioning the residual error model on simulated values allows its
use in prediction, where observations are not available.

The use of the ZI-GL provided better uncertainty estimates relative to the GL as measured by the precision,
reliability, and volumetric bias metrics. These results are consistent with those presented by Smith et al.
(2010), which illustrated the positive effects of using a zero-inflated error model for parameter inference
and predictive uncertainty estimate in the hydrological modeling of ephemeral catchments. We hypothe-
size that the poor performance of GL was a consequence of the negative impact on the likelihood quantifi-
cation of residuals from near zero simulations, which assume overly large values after transformation using
the heteroscedastic error model. This problem was also evident by visual inspection of the transformed
residuals as a function of simulated values, which indicates that the linear heteroscedastic error model was
not well performing for near zero observations. The need for special handling of these low values was also

Figure 4. Model error diagnostic for each of the five error models (L1–L5) considering the original Generalized Likelihood function formulation (A), by simply sup-
pressing zero observations from the data series (B) and using the zero-inflated version of the Generalized Likelihood function (C) for the native forest case study
(validation period only). This diagnostic was performed using the maximum likelihood parameter set. From left to right: (a) histograms of the innovations (at),
where the red line indicates the theoretical distribution; (b) innovations (at) as a function of simulated throughfall; and (c) the partial autocorrelation function of
the innovations (at), where the red lines indicate the 95% significance levels. In the histograms of the ZI-GL approach, the distribution of residuals from class 2
(nonzero residuals from zero simulations) is presented on the left and the distribution of residuals from class 3 (nonzero residuals from nonzero simulations) is pre-
sented on the right. Partial autocorrelation was calculated for the entire data series.
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acknowledged in other studies (e.g., Evin et al., 2013, 2014; Westra et al., 2014). The better performance of
ZI-GL compared to GL illustrates the ability of the proposed likelihood to at least partially deal with this
problem. However, the lower precision and bias metric values for the GLy>0 method, in which the residuals
from zero observations are omitted from the likelihood function, indicates that the residuals from near zero
simulations are still a problem and requires further investigation.

Setting the heteroscedasticity intercept parameter to a fixed value (higher compared to the one obtained
when this parameter was calibrated) has proven to be an easy alternative to reduce the weight of residuals
from near zero simulations on the likelihood quantification. In this case, the three formulations (GL, GLy>0,
and ZI-GL) presented very similar results with the ZI-GL being able to provide a better predictive uncertainty
for lower values.

The GL has flexibility to deal with a wide range of residual errors characteristics and, we expect the results
presented in this study to increase its applicability to zero-inflated data series. Aside from the interception
case studies presented in this paper, the ZI-GL may be useful for other hydrological and environmental
modeling studies dealing with zero-inflated error distributions. Application of the ZI-GL to other situations
is therefore highly desirable to confirm its usefulness.
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